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Abstract-The theory of inextensional bending of the middle surface of a shell is closely connected with
the geometrical problem of the bending of surfaces. Still it is difficult to apply the known solutions of
these problems of differential geometry to actual shell structures. For their sake and safety, however, the
knowledge of the shell specific inextensional bending has proved to be useful in many engineering
applications. It is indispensable in the analysis of shells where the boundary conditions are given in terms
of deformations.

This paper reviews the present state of inextensional bending and presents the geometrical and the
physical problem as well. Main emphasis has been given to various forms of mathematical treatment
offering a new approach. Numerical results illustrate the procedure and provide a better understanding of
the problem of inextensional bending of shell structures.

I. INTRODUCTION
Proceeding from the global field equations valid for the entire sphere of continuum mechanics,
the behaviour of any body can be described by means of certain constitutive equations. A
particularly refined form of this procedure is used for the derivation of shell theories which are
nowadays more or less free from contradictions and have been published in numerous recent
papers. If, therefore, the derivation of the "best" theory for shell structures can be regarded as
being well established, in practical application the direct numerical solution of arbitrarily
complex structures proves to be either too laborious or non solvable with present-day
mathematical means. For this reason it is to be recommended that fundamental simplifications be
made by defining special cases of the shell theory (see, e.g. [8, 11, 13, 14, 20]).

A graph of possible special cases of practical significance is shown in Fig. 1. If one classifies
the special cases by means of the curvature 1/R plotted on the axis of ordinates, then all the plane
problems are obtained on the axis of abscissas with the extreme cases of pure plate bending and
of plane stress, respectively. Quite analogously one obtains for I/R:f 0 the general bending
theory with the extreme special cases of the membrane theory and of the inextensional bending
of the middle surface of the shell. This latter special case is one of the least-investigated
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Fig. 1. Special cases of shell theory.
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phenomena in shell theory. Apart from the publications of the authors [9, 19], special mention is
due to those of Duddeck[3], Fluegge[5], Fluegge-Geyling[6), and Green-Zerna[8]. The follow­
ing chapters shall give an idea of the present state of the theory of inextensional bending within the
scope of the shell theory.

To justify the classification according to geometrical aspects as chosen here it has to be
pointed out that the geometry of spatially curved structures is of fundamental importance. In
contrast to plates and in-plane panels, shells will carry their loadings in principle not because of
the strength of their material but rather because of their geometrical properties. If optimally
chosen, shells combine a maximum of load-carrying capacity and stability of form with a
minimum of the amount of the material used. Examples of such structures are known to us in
nature in the shells of birds' eggs and in the structure of cells. Dealing with actual engineering
problems such optimum structures can usually not be realized since it is necessary to have
openings of various kind and arrangement for functional reasons. Due to this "interference" with
the "natural" condition, the stiffening of the artificially provided boundaries becomes a matter of
prime importance in that the load-carrying properties of the removed parts of the shell must be
compensated, so that the particularly undesirable accompaniments of inextensional bending are
avoided.

On behalf of the small transverse dimensions of shell structures in relation to their
longitudinal dimensions it seems to be advantageous to represent the inextensional bending of a
shell as a problem of differential geometry of its middle surface (see Section 2). The question of
satisfactory boundary conditions can then be answered reasonably from the available
mathematical literature [4). In many a problem of practical engineering, however, the dimension
of finite thickness of the real structure unfortunately cannot be neglected, not even as an initial
approximation. In such cases the bending stiffness of the spatial structure offers considerable
resistance to its being deformed. This becomes apparent in secondary membrane forces, so that
in real structures generally there does not exist a case of exact inextensional bending. How this
complex reality in regard to shell structures can be dealt with by means of a mechanical­
mathematical model susceptible to computation will be explained in Sections 3 and 4. This has
been achieved here by means of an infinitesimal shell theory and can be extended analogously
to a theory of large deformations. In the section following thereafter, the main intention is to find
possible solutions for analytical methods considering "ideal" surfaces and for numerical
investigations aimed at attaining the "complete" theory. Experimental investigations are only
considered marginally. In conclusion, characteristic examples of numerical results will be given
to illustrate the new approach presented in this paper.

To increase the scope of present investigations by including large deformations, the
consideration of quasi-inextensional bending may also be employed in setting up a stability
theory of shells [7].

The representation of the theory is based on the tensor calculus introducing the notation of
Ricci. and agrees basically with [8]. Use is made of the Einstein summation convention,
according to which summation takes place over opposite indices of the same kind. The Greek
letters take the values of 1 and 2. Vectors are indicated by bold letters. On the surface the
Gaussian parameters OU are used. The partial derivation according to these coordinates is
represented by (,), the covariant derivation by (I). The scalar product of two vectors is indicated
by ('), the vectorial product by (x).

2. THE GEOMETRICAL PROBLEM

The aim of any physical theory is to describe phenomena and processes of the empirical world
surrounding us. The complete ascertainment of all influences is bound to fail at the present time
already because of mathematical difficulties. One is thus compelled to a series of simplifications
and neglections. This sometimes takes place in a very radical way in order to first investigate the
most important characteristics and only afterwards, bit by bit, to ascertain parts of the neglected
influences and their effects. With this in mind, as a first step towards defining and investigating
inextensional bending, the "real" shell structure is therefore abstracted into an "ideal" surface.
This method seems reasonable and suitable, since the stress and deformation behaviour of shell
structures, too, is generally described by that of a reference surface resistant to bending and
stretching.
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As a result of this idealization, a mathematically consistent formulation of the geometrical
problem is now possible. This is based upon the differential geometry of surfaces, in which
particularly their deformation plays an important part. A relatively detailed representation has
been given by Hamach in[9,10], while more specific details are to be found, for instance,
in[4, 15, 16].

The original, that is to say undeformed, surface is indicated by F, and the deformed surface by
f. On F the Gaussian parameters tr are chosen as curvilinear convective coordinates. If one
further assumes that there exists a permissible projection between F and f, then f can also be
related to the same parameters tr [9, 15]. Thus a completely analogous description of both
surfaces is possible. Any point of F resp. f can be described by the position vectors of the
undeformed resp. deformed surface as follows:

R = R(O"') resp. r = r(0"').

On F resp. f a vector basis can be defined by

oR or
A", =00'" = R.", resp. a". =00'" =r.",.

If one further assumes for the vectorical products

then the unit normal vectors of F resp. f become

(2.1)

(2.2)

(2.3)

(2.4)

The three vectors Ah A2, A(resp. ah a2, a) form a non orthonormal moving trihedral on F (resp.
f). This should be oriented in such a way that the vectors in the given sequence form a
right-handed system. The first and second fundamental forms of F (resp. f) are

dR·dR = A",pdO"'dOP resp. dr·dr = a"'lldO"'dOll,

dR·dA =- B",pd8"'d8P resp. dr·da =- b"'lld8"'dOP
•

The symmetric covariant metric tensor is characterized by

and the symmetric covariant curvature tensor by

B",p =- A", .A,ll resp. bap =- a", 'a,ll'

(2.5)

(2.6)

(2.7)

(2.8)

Both tensors are of basic importance, which results from the fundamental theorem of the theory
of surfaces. According to this theorem, the surface F (resp. f) is well defined by Aall and B",p
(resp. aap and h",p) except for rigid body motions. The vectors of the moving trihedral must, in
this case, fulfil integrability conditions, respectively the fundamental tensors must satisfy the
well-known equations of Gauss and Mainardi-Codazzi.

For the difference of the two fundamental forms of F and f one obtains

The difference tensors

dr·dr-dR·dR = 2a"p dO"'dO P,

dr·da - dR·dA = w",pdO'" dOP.

(2.9)

(2.10)

(2.11)

(2.12)
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describe, according to definition, the metric and curvature changes because of the transformation
from F to f, that is to say, because of the surface deformation. The relation between the surfaces
F and f, resp. between their position vectors (2.]), is now established by equation, see also Fig. 2,

(2.13)

in which v represents the deformation vector of F. If this is not subjected to any limitations to its
order of magnitude, then one speaks of a finite deformation of the surface F into the surface f.
With (2.13) one obtains for the moving trihedral of f

a" =A" + v.", a=A+w, (2.14)

in which case the normal change vector w over (2.4)1 and (2.14), can be represented by v. For
(2.11) and (2.12) one can further obtain

W"fJ = A" 'W,fJ + A,fJ ·v." +v." ·w.i>'

(2.15)

(2.16)

The two difference tensors a"fJ and W"fJ are of fundamental significance for the deformation of a
surface. This follows directly from (2.11) and (2.12) and from the fundamental theorem of the
theory of surfaces. Viewed from this standpoint, the use of other deformation quantities seems
less reasonable (see[9, 10]).

If one now turns to the global theory of surfaces and presupposes the surfaces to be limited
and orientable, then a further important uniqueness theorem can be obtained. According to this
theorem, the two surfaces F and f are congruent if their fundamental tensors agree at all points
(again with the exception of a rigid body motion). The condition of congruence of the surfaces F
and f then follows directly from (2.11) and (2.12) by

(X"fJ = 0 and W"fJ = O. (2.17)

Since, however, in the case of a general deformation (2.13), (X"fJ and W"fJ will usually not
disappear simultaneously, it is possible to define the further special case

a"i> = 0 and W"i> ::j:: 0 (2.18)

which, in particular, describes the bending of a surface. A finite deformation (2.13) is denoted as a
finite bending if, during the process of deformation, all the arc lengths remain unaltered. If one
denotes the line elements of f and F with ds and dS respectively, then (2.5) represents their
squares, and, because of (2.9) and (2.11), the equations

(2.19)

must apply to all points of the surface. With (2.15) one obtains from (2.18) the equivalent

Fig. 2. Descriptionof the undeformed and the deformed middle surface of the shell.
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(2.20)

The eqns (2.19) and (2.20) represent equivalent equations of conditions for the existence of a
surface bending. If, in an exceptional case, (2.17) is also satisfied, then the bending of the surface
degenerates into a rigid body motion.

In substance a surface-bending represents a length-preserving (isometric) projection, which
naturally at the same time is also angle-preserving (conformal) and area-preserving. The equation
(2.19) also states that all quantities related to the first fundamental form remain unchanged, that is
to say, are bending-invariant.

Regarding practical engineering problems one is often able to classify an infinitesimal
deformation within the scope of a geometrically linear theory. The finite deformation (2.13) is
then qualified in that sense that products of v as against v itself may be neglected. This must also
apply to the derivatives of v. The simplifications

(2.21)

(2.22)

are then obtained for (2.15) and- (2.16), i.e. quantities of higher order (such as v." ·v./l) may be
neglected in regard to v. An infinitesimal deformation is now denoted as an infinitesimal bending
if all arc lengths with the exception of quantities ot' second (and higher) order(s) remain
unchanged. From a comparison of the line elements of f and F the equation of condition

dR·dv=O (2.23)

is obtained, since dv·dv as a quantity of the second order has been neglected. Taking into
consideration the already simplified form (2.21) one obtains in analogy with (2.20)

(2.24)

While (2.24)\ and (2.20)1 formally agree, a comparison of (2.24)2 with (2.20)2 clearly shows the
difference between a finite and an infinitesimal bending. Indeed, one may no longer speak of a
length-preserving projection, since in the case of an infinitesimal bending a factual change of
length is permissible, even if it is of a smallness of higher order. One thus recognizes that the
definition of infinitesimal bending is related to a much weaker geometrical condition than is that
of finite bending. In[4] it has been shown that one can very well define bending theories of a
higher order-a possibility into which it is not intended, however, to go in more detail here.

A simple example of a surface bending can be demonstrated with a sheet of paper, which
indeed comes very close to the mathematical model of a surface. This sheet of paper can be given
various curved configurations without tearing it, Le. without having any change of length.
Corresponding deformations are also possible at a cylindrical model, which can be formed by
sticking together two opposite edges of a sheet of paper. The fact that there are also surfaces at
which such deflections are not possible will be discussed in Section 5. In this case the surfaces are
denoted as nonbendable. In order to emphasize more clearly the difference between a finite and
an infinitesimal theory the denotations nonrigidity and rigidity for infinitesimal bendability resp.
nonbendability are commonly used. Taking into account the mutual dependencies we get the
following relations

finite theory:

infinitesimal theory:

bendable
~

nonrigid

nonbendable
t

rigid

The arrows indicate the direction of the deduction, i.e. a rigid surface is always nonbendable and
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a bendable surface is always nonrigid. It should be noted, however, that the reverse deduction is
not always possible (see [4,9]).

In the sense of differential geometry the problem of the bending of surfaces was defined as a
deformation without (resp. only sufficiently small) changes in length. In the case of applying the
two difference tensors this is equivalent to the fact that during bending there are no (resp. only
sufficiently small) metric changes, but only curvature changes. The determination of the
bendability or nonrigidity of a surface would now mean to determine a compatible deformation
vector v in such a way that the condition (lall = 0 is fulfilled at any point and only changes of
curvature Wall '1= 0 occur. If such a vector v cannot be found, i.e. if Wall = 0 would always apply,
then the surface according to (2.17) is nonbendable resp. rigid. Several methods for such
investigations will be given in Section 5. Then it will become evident that particularly the type of
curvature and the boundary conditions of the surface are of decisive importance.

The two previously-mentioned examples illustrating the bending (with the aid of a sheet of
paper) show very clearly that bendable surfaces possess a high degree of deformability, i.e. they
are very soft and flexible. Thus, generally speaking, they are completely useless for technical
shell structures of concrete or steel. If, however, one considers the idealization introduced at the
beginning of this section, one recognizes that the results gained from a model surface have only
limited validity for the real structure. Actually existing spatial structures are, in fact, not surfaces
in a strictly mathematical sense. Rather do they possess an extension-however small-in the
third direction. It is natural, however, that the influence of the thickness of a shell structure
cannot be determined by a theory of surfaces. To explain this fact let us look at a shell with a
constant thickness t. In accordance with (2.9) the difference between the squares of the line
elements on the deformed and undeformed middle surface of the shell

(2.25)

describes the change of length in this surface, caused by the deformation. If one considers a
surface parallel to the middle surface of the shell at a distance of z (- t /2 s; z s; + t /2), then one
obtains for infinitesimal deformations

ds 2
- dS 2

0:= (2(lall +2ZWall - z2[Ba
A

WAIl +B/WAa +2B/ba
A

(lPA ])dO a
dOll, (2.26)

B/ being the mixed variant curvature tensor. If in accordance with the definition for the bending
of the middle surface of the shell one equates (lall to zero, then the terms in (2.26) affected by Wall

will remain. This means, however, that in the case of a shell (with a thickness t), changes in length
actually do occur, although the middle surface itself does not suffer any changes in length. As a
result of this effect the so-called "bending stiffness" of the shell is brought into play, which sets
up a resistance against the bending of its middle surface. It can now be recognized from this
effect, however, that the thickness of the shell can be of importance, since the degree of
bendability of the middle surface of the shell is influenced by its bending stiffness. From this it
can be concluded that a "bendable" shell will, on the whole, possess less deformability than might
be expected on behalf of the bendability of its middle surface.

To which extent the bending stiffness may become of decisive importance, can be uniquely
demonstrated at plane structures, i.e. at plates. In the Kirchhoff theory of plates it is usually
accepted that one may neglect the elongation and angular changes of the middle surface of the
plate. Only deformations out of the plane-that is to say, bendings-are considered. Since the
deformations are assumed to be sufficiently small, such "inextensional" deformations, due to the
nonrigidity of a circumferentially-supported plane surface[9J, are actually possible. Thus the
Kirchhoff theory of plates represents the classical case of a theory of bending. The remarkable
thing about this is that the load-carrying behaviour of a plate is mainly determined by its bending
stiffness (in addition to the nature of the boundary conditions). Since, however, a
circumferentially-supported plane surface is always nonbendable [9], a theory of pure bending
does not suffice in the case of finite deformations; i.e. besides the moments, the normal forces
must also be considered.

3. THE PHYSICAL PROBLEM

What we have considered up to now has been mainly of a geometrical nature and was related
to an "ideal" surface. Regarding real shell structures, additional influences appear which also
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have to be taken into consideration. One of these is the structural thickness (resp. the bending
stiffness), the effect of which has been discussed in the previous section. Another very important
factor are the properties of the building material. It is well known that the strain measures are
related to the resulting stresses and stress couples by means of constitutive equations, and the
stresses or stress resultants are of main interest in structural computation. The development of
suitable constitutive equations presents quite a problem in itself and requires further
investigation. This whole question will be explained here considering a geometrical and physical
linear shell theory.

Proceeding from the three-dimensional continuum, the constitutive equations of the linear
shell theory can be derived with the aid of various simplifications and assumptions within the
Boltzmann theorem of mechanics. Generally speaking, this takes place by means of
considerations of order of magnitudes. In particular the shell parameter

A=tIL~l (3.1)

plays an important part, L being a characteristic length of the middle surface of the shell. By
consistently not taking into account those terms affected by A2[11,13,14], a first approximation
(after introducing the hypothesis of Love-Kirchhoff) produces the following coordinations

In these

na /3 =na/3(aa/3) =DHa/3aAapll , ;;.a/3 = ;;'/3a,

maf3 = m af3 (wa/3) =BHaflpAwpA, maf3 =m/3a.

(3.2)
(3.3)

(3.4)

represent the symmetrized membrane force tensor and the symmetrical moment tensor. The term
h is defined by

(3.5)

with z representing the coordinates in the third direction normal to the middle surface. The
membrane stiffness and the bending stiffness of the shell are denoted by

(3.6)

The material properties used are Young's modulus of elasticity E and Poisson ratio v. For the
symmetrical tensor of elasticity the equation

(3.7)

applies, aa/3 being the contravariant metric tensor. Other forms of representation for the
constitutive equations have been discussed by Hamach in[ll], but it is not intended to go into
further details about them here.

If in agreement with the definition of the bending of a surface one now equates aa/3 to zero,
then in accordance with (3.2) ii a

/3 will also disappear. From the simplified conditions of
compatibility according to[101

(3.8)

one can calculate the difference tensor Wa /3 and subsequently from (3.3) also the moment tensor
m a/3. At this point one recognizes very clearly that in this special case of the bending theory of
shells the state of stress of the shell is quite decisively influenced by the moments. A shell
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structure, in which such a state is possible, will, in the case of appropriate boundary conditions,
be very soft and, because of its flexibility towards external loadings, should be avoided for
practical purposes. From this, one may deduce that a shell will then also be very flexible (that is to
say, will show severe bending stresses) when au" on behalf of the given loading remains
sufficiently small. In fact, the extreme case aull 0 is not likely to occur very often. That means,
however, that in reality there is a soft transition from the general bending theory of shells to the
special case of inextensional bending of the middle surface. The reason for this is mainly that the
formulation of shell theories-as mentioned at the beginning-is done with various consideration
of the order of magnitudes of certain terms. Generally speaking, these only allow a very global
and general estimate of borderline cases, which always contain an "area of uncertainty".

It is therefore obvious that the definition of inextensional bending cannot only be confined to
the narrowly limited special case aall = 0, but must also permit of (relatively small) changes in
length in the middle surface of the shell. With the aid of the shell parameter A "inextensional"
bending is generally accepted to exist when aall in comparison to W"13 is at the most of the
magnitude A2. In order to limit the "area of uncertainty" Basar and Rothert[2] introduced the
new equation of condition

(3.9)

This new definition does not, however, represent a departure from the existing, mathematically
strict definition (2.24)]. Rather is (3.9) embedded in the uncertainty area of shell theory and is only
meant to provide a rough working basis for becoming aware of inextensional bending. This also
corresponds more closely with the intent of the theory to investigate shell forms as to the
condition under which they are soft and flexible.

Because of (3.9) one is also able to calculate membrane forces with the aid of (3.2). In
connection with the initially-described approximation one must find out whether or not the
constitutive equations (3.2) and (3.3) may require an extension of the form

(3.10)

For the general case of the bending theory of shells, where au" and Wall can be of comparable
magnitude, this question has been investigated by Kraetzig[13, 14]. He describes a further area of
uncertainty for the tensors of elasticity. Nevertheless, it seems that it cannot be regarded as out
of the question that for (2.24) or (3.9) a higher approximation of the constitutive equations is
possible and necessary.

Attention is drawn to a further peculiarity. The constitutive equations (3.2), (3.3) were
determined on the assumption of the hypothesis of Love-Kirchhoff. If one discards this
presupposition, then shearing deformations will aJso occur, and constitutive equations can then
likewise be given for the shearing forces q" (see [13]). In the case of a comprehensive
investigation of inextensional bending the influence of shearing stiffness ought also to be
considered.

Taking all the circumstances described into consideration, the constitutive equations appear
to be the least certain part of the whole theory up to now, particularly as the field of finite
deformations with its much more complicated relations has not yet been studied at all.

4. THE STATICAL PROBLEM

After having chosen the difference tensors Cia" and w"" as geometrical variables (strain
measures), the static variables (stress resultants) used in the theory were determined by means of
the constitutive equations (3.2), (3.3). In[IO] Harnach has described in detail how the geometric
variables are related to one another over the compatibility conditions. Quite analogously, the
static variables are also not independent of one another. With inclusion of the given external
loads they have to be in equilibrium. These conditions of equilibrium are represented in the linear
shell theory e.g. in the form

na"l" - b/m a" I" + p" = 0,

b""n"" + m"f3 lull +p= o.
(4.1)

(4.2)
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The shearing forces q/3 have already been eliminated by

367

(4.3)

The tangential and normal components of the external load vector have been denoted by p /3 and
p, external load moments have not been taken into consideration. The connection between fi a

/3

and n a/3 is given by the condition of symmetry

(4.4)

A consistent derivation of the conditions of equilibrium can be taken, for example, from the laws
of thermodynamics[14, 17], or the variational principles[ll, 18]. With the latter method one
obtains, at the same time, the pertinent boundary conditions. These have hitherto not received
attention, although they playa very considerable part. It has already been pointed out in Section 2
that the rigidity or bendability of a surface is decisively influenced by the boundary conditions.
This fact is implicitly already embodied in equation (3.8), since it is natural that in the integration
of this system of equations the boundary conditions must be taken into account.

The influence of the boundary conditions can be illustrated by a simple example. In Section 5
it will be shown that in the sense of the bending of a surface a cylinder closed at the ends by a
plane surface is rigid. If one cuts a hole into these plane surfaces (without touching the bounding
curve of the cylinder), the cylinder still remains rigid. If one now turns again to a real structure, a
number of additional aspects emerge. If one, at first, replaces the base of the cylindrical shell by a
panel, then the shell, because of its elastic tensility, will no longer be completely rigid, but
nevertheless one may suppose that there will be a certain degree of flexibility of the cylindrical
shell. If one now replaces the perforated base surface by a circular ring beam, then it is nearly
impossible to make any statement as to the flexibility of the shell in a general form since the
stiffness of the circular ring beam plays a decisive part. In a borderline case it tends towards zero,
and it would follow the nonrigidity or, as the case may be, a large degree of flexibility of the shell.
This fact is also known from the theory of cylindrical roofs. Of great interest to building
engineering in this respect would be an investigation as to what degree of stiffness a ring beam
must have in order to considerably reduce the deformability of a shell.

The influence just described is based chiefly on the elastic flexibility of the edge support.
Kollar [12] makes use of the expression "pseudorigid" and provides an explanation for the case
of the circular cylindrical shell.

Deviating from this, there are cases in which the influence of the supporting mode is of minor
importance. In this connection we shall take as an example a "long circular cylindrical shell" with
end-panels. As a surface model, rigidity would be ensured; as a real structure, however, it is
possible that-independent of the supporting mode-there may be large deformations in the
middle of the span, particularly if the loads only act there and are subjected to con­
siderable changes in the circumferential direction. Here again the bending stiffness of the shell
plays an important part.

The remarks made up to now show that various influences exceeding the context of a surface
model-such as wall thickness, material properties, loadings, and boundary conditions-occur
and exercise different effects. The fact is, however, that not only the complete description of the
problem of inextensional bending is of an extremely complex nature but also its solution.
Dependent on the practical requirements in each case, one will need to look for suitable methods
for the solution of the problems in order to achieve, with as little effort as possible, a sufficiently
accurate result. In the following section a number of approaches will be described.

5. POSSIBILITIES FOR SOLUTIONS

At first one can-as described in Section 2-again proceed from the abstract model of an ideal
surface and investigate its deformation behaviour, that is to say, make use of methods of
differential geometry. This has been dealt with in great detail from the mathematical point of view
in [4]. A presentation of the subject matter in general, adequate for engineering requirements, can
be found in[9, 10]. In the following remarks, therefore, only the most important facts are
summarized. The definition of a finite or an infinitesimal bending of a surface is given in (2.20) and

S&S Vol. 12, No. 5-0
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(2.24) respectively. Both equations may be traced back to partial differential equations-(2.20) or.
as the case may be (2.24)-for the deformation vector v. If the only solution is the trivial case of
v = 0, then, because of (2.13), r = R would always hold good, Le. both surfaces agree identically.
The other trivial case v = const. describes a pure rigid body translation. In both cases a congruity
of the surfaces then exists. Accordingly, every nontrivial solution of the differential equation
would describe a surface-bending. In general, however, the integration of partial differential
equations is rather difficult, as can be gathered from pertinent literature. It is therefore not
intended to attempt a more detailed discussion of the determination of surface-bendings here.
For problems of practical engineering, the question is, in fact, most often one of finding out the
rigidity or nonbendability of a surface, since in such cases a greater flexibility of the shell
structure is normally not to be expected. Proceeding from the fundamental theorem of the theory
of surfaces and the uniqueness theorem in a global consideration, it could thus be proved that at all
points of the surface the conditions

(5.1)

are simultaneously fulfilled. Since a surface-bending is defined by the condition (l,,{J = 0, all
variables of the bent surface will, for purposes of brevity of the representation, in future be
indicated by an (*), so that (5.1) can be replaced by

(5.2)

Equation (5.2) represents the most general and comprehensive condition for the nonbendabitity
of a surface. From (2.15) and (2.16) one recognizes, however, that (5.2) is a complicated partial
differential equation for the deformation vector v. Since in solving this differential equation the
boundary conditions of the problem must also be fulfilled, one can already see that a general
solution of this differential equation will present considerable difficulties.

A handier, although less general, method is using integral formulas. As representative of
these, the integral formulas of Herglotz[9, 16] may be mentioned

IF XA·RdF = Ie {(Tg - T~)T'R - (K" - K~)N'R}dC - 2L(H - H*)dF, (5.3)

their "symmetrized" form[9, 16J being

L: (A·R +a*'r*)dF = Ie {(Tg - T~)(T'R -t*'r*)-(K" - K~)(N'R - p*·r*)}dC. (5.4)

The line integrals on the right-hand sides are formed along the closed bounding curve C.
Introduced as new quantities for the bounding curve of the undeformed surface F have been:

dR
ITI= 1, (5.5)the tangent vector T(C) = dC'

the normal vector N(C)=AxT, INI= I, (5.6)

the geodesic convolution
dA (5.7)Tg =-N' dC'

the normal curvature
dT (5.8)K,,:::: dC'A,

the geodesic curvature
dT (5.9)Kg = dC·N.

The analogous quantities on the bounding curve of the bent surface f* have been denoted by t*,
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,,*, 'T~ and let Hand H* are the mean curvatures of the undeformed and the bent surfaces. The
quantity w is defined by

(5.10)

The metric determinant det (Aatl ) has been denoted by A.
For the application of the integral formulas (5.3) or (5.4) further statements on the invariant

wlA are required. To begin with,

(5.11)

holds true for F[4,9J if F and f* are two isometric surfaces and if, everywhere on F, the
expression K ~ 0 for the Gaussian curvature applies (A and a* must be oriented in such a way
that Hand H* are not negative). Furthermore, it can be shown that two isometric surfaces F and
f* are congruent if according to[4, 9J the condition

w=o
A

(5.12)

is fulfilled. At the same time, however, neither the Gaussian curvature K nor, as appropriate, the
geodesic curvature Kg of the asymptotic lines may disappear on F in a whole area.

With the eqns (5.4), (5.11), and (5.12) one can now furnish proof of congruity for two surfaces
F and f*. To briefly sketch. the mode of procedure: First the boundary integral in (5.4) is made to
disappear, so that the surface integral on the left-hand side equals zero. According to (5.11), w/A,
under the given conditions, is not positive. If furthermore the Minkowski supporting functions
A·R and a*'r* possess a fixed sign, then it follows that wlA = O. In accordance with (5.12), the
congruity of both surfaces then follows.

Let the application be illustrated by a simple example. In the case of a closed surface of a
convex body (in which K > 0 holds everywhere), the boundary integral automatically disappears
and of (5.4) only

( ~(A'R+a*'r*)dF=OJF A
(5.13)

remains. Let the orientation of the surfaces F and f* be so determined and that A and a* point
inwards and that F and f* contain zero as the inner point, then all the Minkowski supporting
functions are negative. Equation (5.13) can then only be fulfilled if w/A equals zero, from which,
in accordance with (5.12), the congruity of the two convex body surfaces follows. The so-called
theorem of convex body surfaces states that a convex body surface is always nonbendable.

Two further remarks must be made in regard to the application of (5.4). First, the restrictions
with regard to (5.11) and (5.12) show the limited area of validity, since cylinder, cone, and other
ruled surfaces are excluded. Of great importance here, for practical problems, would be a general
mathematical verification for an extended application of (5.11), (5.12), and/or (5.4) also to other
classes of surfaces, or a mitigation of the conditions pertaining to (5.11) and (5.12). Furthermore
one can clearly recognize from the given integral formulas the important influence of the
boundary conditions. In order to infer the congruity of unclosed surfaces with positive Gaussian
curvature in the way just mentioned, it is necessary that the boundary integral in (5.4) be zero.
This would be the case, e.g. if curvature and torsion of the bounding curve did not change. These
very rigid demands can, however, in many cases be further mitigated. Some pertinent examples
may be found in[4] and [9J.

All equations and explanations given hitherto have been applied to "finite" bending. Similar
equations can also be given for "infinitesimal" bending. One may, for instance, according to [9),
regard the integral formula of Blaschke

(5.14)
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as an "infinitesimal analogon" to the integral formula of Herglotz (5.3). The torsional vector p
introduced in (5.14) is defined by

w=p xA.

For its partial derivation the representation

was used. It was shown in[9] that

(5.15)

(5.16)

(5.17)

applies. Accordingly, similar considerations as for (5.3) or (5.4) can be applied to (5.14)-or
modified forms of the same. On account of the detailed representations in [4] and [9] this will not
be discussed any further. Decisively for the application of (5.14) is again that the boundary
integral is caused to disappear and that a similar procedure is used as in (5.13). In this way it is
possible, for instance, to directly prove the rigidity of the closed convex body surface, which, as we
know from Section 2, does not automatically follow from the previously proved nonbendability.
Further proofs of rigidity of unclosed surfaces can again be found in[4] and [9J.

More detailed statements as to the nature of the boundary conditions of the surface F in
regard to the avoidance of "infinitesimal" bending can be found, for example, in the paper of
Kollar[12], who proceeds from the theory of partial differential equations and uses a particular
form of the fundamental equation (2.23). If the surface F in the orthogonal Cartesian coordinate
system x, y, z is given by

z = z(x, y) (5.18)

and if one denotes the components of the deflection vector v in the direction of these coordinates
with ll, v, w, then it follows immediately from (2.23) that

dxdu +dydv +dzdw =0.

After elimination of u and v one finally obtains (see [9])

(5.19)

(5.20)

Concerning this, however, two restrictions are to be noted: Equation (5.20) is valid on the one
hand only for "infinitesimal" bending and on the other only for surfaces which can be uniquely
projected onto a plane (in[4] and [9] denoted as "caps").

As the statements on the rigidity, nonrigidity, nonbendability, or bendability of an ideal
surface only possess a restricted validity for the real structure, one will, in doubtful cases, always
endeavour to have an investigation carried out on the real structure concerned; i.e. one must, for
purposes of calculation, have recourse to the complete system of equations of the shell theory
(statical, geometrical, and physical field equations as well as the pertinent boundary conditions).
For cases of practical interest this mode of procedure is regarded by the authors as being the
most promising in existence at the present time. We shall now go into details about this
procedure, and in the next section we shall give further explanations by means of examples with
numerical results.

The equations of a linear theory necessary for a numerical calculation of the complete
problem have been substantiated in detail in the previous sections. While it would now seem
expedient to proceed from the eqn (2.24), it is thought desirable here to also include the
neighbouring area

ctap=o (5.21)
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in the scope of a theory of infinitesimal deformations. This procedure is based on the philosophy
that in determining physical problems it is always better not to allow any important parameter to
become zero, even where this would make the solution of the problem easier. Rather does this
groping forward by means of asymptotic diminishment of the parameter in question lead to new
perceptions. With this in mind, that less can be more, the attempt was made by the second-named
author to achieve a quantitative demarcation of the theory of inextensional bending (see[2]).

In order to approximate to the limiting value aall = 0 as accurately as desired, the following
rule of approximation is introduced:

max lA,1:5 A,,-r max IBa I. (5.22)

This rule says that the absolutely greatest component Aa of a tensor in an area G (apart from
singularities) is of a comparable order of magnitude to the amount of quantity Ba , which is
representative of the components of another tensor in the same area:. With a suitable value (to be
chosen arbitrarily)

O<r<1 (5.23)

a range of tolerance can be delimited for any problem as desired. The smaller A and r are, the
better the approximation rule as given in (5.22) will be. Therefore, within the scope of the shell
theory underlying these considerations, the problem of inextensional bending is always present if
the first difference tensor aaIJ in comparison with the second difference tensor Wap does not
exceed the magnitude A2. Thus, in the concrete case of the infinitesimal theory of inextensional
bending, the general approximation rule (5.22) will be

max laaIJ I:5 A2-. max IWall I.

For example, with A=10-2 and r =0.5, one obtains, in accordance with (5.24)

(5.24)

(5.25)

a basis for classifying a calculated state of stress and deformation within the limits of the selected
uncertainty area as the predominant problem of inextensional bending (see Fig. 1). Making use of
the constitutive equations, kinematical relations, and conditions of equilibrium given in the
previous sections, the conditional eqn (5.24) indicates whether in a special case, taking into
consideration the investigated shell geometry, the existing load distribution, and the given
boundary conditions, the problem of inextensional bending is present. This procedure of an
asymptotic approximation to the limiting value with aaP = 0 appears to be reasonable for the
vast majority of the practical problems occurring. Numerical results obtaiped with this procedure
will be discussed in the next section.

Should the possibilities of solution hitherto discussed fail, then the method of an experimental
model investigation as given by Rothert in[l9] can be adopted. This approach can be particularly
recommended for certain shells with negative Gaussian curvature because in the case of this type
of structures not only the theory of small deformations but also the calculating methods used for
shells with positive Gaussian curvature may faiL

6. EXAMPLES AND NUMERICAL RESULTS

A few chosen, characteristic examples will now be given to supplement and illustrate the
previous discussions, and here again we shall proceed from "ideal" surfaces. Reference was
already made in Section 2 to the nonrigidity of plane surfaces. It generally is valid good that any
plane surface which is immovably supported at its edge, although nonrigid, is nonbendable.
Precisely this example shows once again very clearly the difference between "infinitesimal" and
"finite" bendings.

Like the planes, the cylindrical surfaces also have a vanishing Gaussian curvature. Firstly, it
may be shown that any cylindrical surface is bendable, which automatically means that it is
nonrigid. This fact leads to the recognition that, in general, cylindrical surfaces will be relatively
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flexible structures. This situation is altered, however, if one closes the two bases of the cylinder
with planes. The lateral area of the cylinder is then rigid (the plane bases remain excepted, since
they are, of course, always nonrigid.) Even if one cuts holes in the bases, the rigidity of the lateral
area is maintained. These simple examples show very impressively the influence of the boundary
conditions on the flexibility of the cylinder. The hindrance to the free deformability of the
bounding curve at the bases produces a certain stiffening effect. In shell theory this is taken into
account by the requirement that in the case of cylindrical roofs. for instance, in-plane panels at both
ends should always be provided.

Considerably stiffer by nature are surfaces with a positive Gaussian curvature. From the
standpoint of the engineer this fact was rendered quite conclusively by the previously proved
nonbendability and rigidity of the closed convex body surface-the so-called theorem of convex
body surfaces. As obvious as this conclusion may be and however often it may have been
substantiated by experience with actual structures, a certain amount of caution appears to be
indicated. The statement just made was, in fact, only valid for the closed surface. As soon as one
cuts a hole in the convex body surface it becomes nonrigid and bendable. Here again the
boundary conditions play an important part. For if one takes precautions to see that the bounding
curves remain rigid, then the rigidity of the perforated convex body surface is again ensured.

To illustrate the calculations for the quantitative estimation of inextensional bending
states-a procedure characterized by the authors in the foregoing section as particularly
suitable-a few numerical results will now be given. They are taken from the study of the
second-named author [2J and constitute only a fraction of the hitherto evaluated material, while
computing programs and evaluation are ascribable to Y. Basar.

By way of example, the mode of procedure in calculating inextensional bending states in a
boundary-loaded circular cylindrical shell will be shown. For this purpose the shell shown in Fig.
3 with the radius r = 10 m, the height = 15 m, Young's modulus E = 3· 106 Mp/m2

, Poisson ratio
II = 0, shell thickness t = 10 em, and A = 10-2 was chosen. To illustrate load effects, the
displacement of the lower bounding curve will be investigated, in which case the deflection V(3) as
well as the tangential displacement Vm in the direction 0 1 will be predetermined to be

with

V<Nl=O.IOm and n 1,2,3....

(6.1)

(6.2)

The choice of the number n as an index shows the association of the nth harmonic developed in
Fourier series with a variable of state. The boundary condition chosen in (6.1) corresponds to the
proposition all n = 0 for the lower bounding curve.

The qualitative alteration of the displacements of the bounding curve is attained by
systematically running through n in accordance with (6.2). In this way one exposes the lower
bounding curve to displacements whose degree of variability grows continuously with increasing
n. It becomes evident that this qualitatively varying course of the boundary functions
considerably influences the stress and deformation state of the structure. The use of various
harmonics has the additional advantage that from the known bearing behaviour of each harmonic

x 3 =Om

Fig. 3. Geometry of the cylindrical shell.
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a conclusion can be drawn in a simple manner as to the stress and deformation state of its
combination. Here it should be remembered that as a result of the chosen boundary functions
(6.1) or (6.2) the variables of state-as the variables are associated with cos or sin
respectively-represent periodic functions. Accordingly, their course is only shown for their
maximum values, which correspond to the points 91 = 0 or 92 = 11'/2n respectively.

In detail, the calculation produces the following numerical results:
(l) For n =1, the system is subjected to a pure transposition in the direction of the x I-axis, in

which case the amount of the displacement vector is Iv 1= 0.10 mand the variables of deformation
and stress resultants vanish identically.

(2) For n = 2, the variables of state concerned are shown in Fig. 4. The displacement
components V(l) and V(3) run through the entire shell at an almost constant value. The tangential
displacements V(2) as compared with V(3) are approximately 103 times smaller and therefore
negligible. This means to say that the value of deformation of the parallel remains practically
unaltered over the whole height. Fig. 5 shows this deformation in a spatial representation.
Experimentally this can be demonstrated very simply with the previously-mentioned sheet of
paper struck together in the form of a cylinder, which one presses together at opposite points of
the lower edge with two fingers. In Fig. 6 the lower bounding curve of the shell is shown before
and after deformation. The plotted curves are characterized by the fact that throughout their
whole course they show the same arc length. With a predetermined deflection function, therefore,
the displacement function can be chosen in a way that the bounding curve does not undergo any
change of length when deformation takes place.

The normal forces n(22) and n(l2) extend throughout the whole shell and are comparable in their
magnitude with the circumferential moments (Fig. 4). The bending moment m(lIl> which is mainly
dependent on V(3), is characterized, like V(3l> by a constant course. In this connection attention is
drawn to the relatively small bearing reactions with which the predetermined deformation of the
bounding curve is produced:

n(22) =1.01 Mp/m, n(2l) =0.65 Mp/m, q(2) =-0.058 Mp/m.

From this one can see that the cylindrical shell does not offer any resistance of importance to the
longwave boundary displacements.
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Fig. 4. Numerical results considering n = 2.
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deformation
(10flmes enlarged)

cylindrical shell

, boundary curve
[__before deformation

boundary curve
after deformation

Fig. 5. Deformation of the cylindrical shell for n = 2.
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Fig. 6. Numerical results considering harmonics n > 2.

In the problem considered the 104-times values of the tensor aa{3 are of order of magnitude
as the tensor W a {3, the most unfavourable value of max la221/max IWlIl amounting to
approximately 1/4000, whereby the problem, in accordance with the approximation here chosen
(5.25), falls within the domain of inextensional bending.

Now we shall look at the results obtained for the higher values of n (Fig. 7). With increasing n,
the deflections in the lower bounding surface diminish steadily and increase more and more in the
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lower bounding curve area, so that with n = 30 they practically affect 1/6 of the entire shell. With
increasing waviness of the displacement of the bounding curve the predominant deformation of
the structure becomes less. With increasing n, the meridian forces n(22) increase so rapidly that
their values corresponding to V(n) = (O.lO/n) can be drawn in the same diagram. In the case of the
circumferential moments m(ll) this rapid increase only occurs when higher values of n are
reached. From n = 15 onwards, the functions mentioned are characterized by a pronounced
decay behaviour.

With n = 3, the criterion of inextensional bending is slightly infringed only in the vicinity of
the lower edge of the boundary curve. This can therefore be regarded as a borderline case. With
n = 4, however, taking into account the area of uncertainty as determined here, we have a
problem of bending theory, as can be seen from a comparison of the strain tensors a22 and WII.

Finally, with increasing n, the problem becomes one of an edge disturbance.
The space available does not allow of any further numerical results being shown. In the case

of the spherical shell and the hyperboloid of rotation further results can be found in [2]. For the
reader of the 1974 German Annual Handbook on Concrete (Betonkalender) it should be
mentioned that the problem of a strong increase of the bending moments discussed by Kollar on
pages 399 pp. also must be seen in connection with the problem of inextensional bending dealt
with in this study.

As the computing program at present in operation is only applicable to rotational shells, the
problem of inextensional bending in the case of flat hypar shells has been approached by way of
experimental investigations. The results of experimental investigations given by Rothert in [19]
confirm very impressively the computational investigations made by Duddeck[3]. In[l9] it
becomes particularly apparent what constructional measures have to be taken in order to prevent
a shell structure from the generally undesirable state of inextensional bending.

7. CONCLUDING REMARKS

This contribution presents a review of the present state of the theory of inextensional bending
of the middle surface of shells. It covers the geometrical and the physical problem as well. Main
emphasis has been given to various forms of mathematical treatment offering a new approach.

For the borderline case of an ideal surface a mathematically exact definition is possible by
means of a"l1 = O. Special investigations can be carried out with the aid of methods of
differential geometry. For real structures these propositions are only of limited validity. For many
practical problems it is therefore necessary to solve the appertaining system of consistent
equations numerically. The approach of a rough approximation as proposed here would therefore
seem to hold out particular promise of success. By investigation of the adjacent finite area one
obtains numerical results in an "area of uncertainty". Dependent on the limits of toleration
chosen, the problem in question can then be classified as predominantly one of bending theory or
of inextensional bending. With the aid of the proposed approximation (5.24) one is able to analyse
a shell structure quantitatively as well. The numerical results given illustrate the new approach
and provide a better understanding of the problem of inextensional bending of shell structures.

If with the procedure as discussed the problem of inextensional or quasi-inextensional
bending of the middle surface of a shell can be satisfactorily solved, a number of questions still
remains open. For example, are there any constellations of geometry, boundary conditions, or
loading conceivable which necessitate an extension of the constitutive equations by resorting to
"higher approximations"? What influence does the neglect of the terms of a theory of large
deformations mean to the present limitation within the bounds of an infinitesimal theory? What,
finally, is the relation of the order of magnitude of these terms which have not been considered in
the cases of the behaviour of a nonlinear elastic material?

This, and an almost arbitrarily expandable, hitherto not yet answered catalogue of questions,
may make this special case of the shell theory, which because of its mathematical-physical
difficulties has received little consideration, to a further profitable field of research.
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